Connecting Stressors, Ocean Ecosystem Services and Human Health

Ariana Sutton-Grier & Paul A. Sandifer University of Maryland & National Ocean Service National Oceanic and Atmospheric Administration Conceptual Representation of Human Health as Cumulative Ecosystem Service in Healthy and Stressed Ecosystems

Sandifer and Sutton-Grier. 2014. Natural Resources Forum

Five Stressor Examples

Rising Temperatures

Nutrient Pollution (Harmful Algal Blooms and Hypoxia)

Ocean Acidification

Habitat Destruction and Loss of Biodiversity

Extreme Weather Events

Rising Temperatures

Cheung et al. 2012 and 2013 Nature Climate Change and Nature

- Changes in distribution, phenology, and productivity
- Evidence of reduced body size
 - Less dissolved oxygen in warmer water
 - Average body size could contract by 14-24% by 2050 for many species
 - At higher latitudes, more of catch is now warm water species

Vibrio cholerae

Vibrios: Naturally Occurring Pathogens

Vibrio parahaemolytic Vibrio vulnificus

- Seafood poisoning caused by Vibrio bacteria
- Outbreaks in numerous areas of US including 1st time in Alaska (~1,000 km range extension)
- Vibrio v. can cause would infections and can lead to death: ~ 200 deaths in the Gulf from 1989 – 2004
- Regular reporting to CDC only began in 2007
- Bacteria most prevalent at high temperatures
 → good
 chance infections may increase with increased temp

Zoonotics

- Lacaziosis (formerly called Lobomycosis) — Previously only in tropics but now in temperate waters of US, Europe and Asia
- Cryptococcus gattii

Previously found only in tropics outside US
Emerged in Pacific Northwest around 1999;
first case in US in porpoise, then epidemic in domestic animals and people in Canada, WA, OR

 Not sure if movement of these diseases is due to climate change, but diseases are now showing up in places and species not previously seen

Relationship between Rising Temperature, Ecosystem Services, and Human Health

Rising Temperatures

Changes in Ecosystem Services

- <u>Decreases</u> in average fish biomass
- <u>Increases</u> in disease and pest population abundance and geographic distribution
- <u>Changes</u> in Species distributions
 - Changes in what is present to harvest or where diseases or vectors can survive

Impacts on Human Health

- Less seafood biomass and changes in species distributions
 → less food security and food diversity in some areas
- More disease exposure (Vibrios, zoonotics, etc.)
- More heat stress

Nutrient Pollution (Harmful Algal Blooms and Hypoxia)

- Both hypoxia and HABs are growing problems worldwide
- Eutrophication leads to hypoxia and increases the occurrence of HABs in some cases
- Human (and other animal) health risk, even death
- Significant economic losses

Distribution of HABs in the U.S.

Economic cost of HABs over the last decade is conservatively ~\$1billion, but cost of illness and lost productivity problem mean costs much greater.

Texas, western Gulf of Mexico, Karenia brevis ("Texas red tide")

Padre Island National Seashore Closes Park

to Dogs (December 9, 2009)

Climate Change and Harmful Algal Blooms

Climate Change Affects Harmful Algal Blooms **Scientists Connect Global Warming and** Nutrient Runoff to HABs

© Nina Munteanu

Aug 29, 2008

Changes in climate may be creating a marine environment particularly suited to HAB (harmful algal bloom)-forming species of algae, according to a team of scientists.

Environ Health. 2008; 7(Suppl 2): S4. Published online 2008 November 7. doi: 10.1186/1476-069X-7-S2-S4 PMCID: PMC25867

Copyright@2008 Moore et al; licensee BioMed Central Ltd.

Impacts of climate variability and future climate change on harmful algal blooms and human health

Stephanie K Moore, 21,2 Vera L Trainer, 2 Nathan J Mantua, 3 Micaela S Parker, 4 Edward A Laws, ⁵ Lorraine C Backer, ⁶ and Lora E Fleming ⁷

- Warming temperatures contribute to increases in frequency, duration, and geographic extent of HABs (e.g., Alexandrium, Pseudo-nitzschia) Increases in CO₂ and reduction of P (which occur in acidified waters) can increase HAB production(e.g., Pseudo-nitzchia)
- **Domoic acid production increases** with low P and high CO2
- (Sun et al. 2011)

Hypoxia: Increasing Global Problem

1980

1910

960

1990 2000-1

100

50

0

930

Atlantic coast exhibit

eutrophication

Science, 2008

Diaz and Rosenberg:

worldwide > 400 marine/estuarine systems with reports of hypoxia as of 2007

Three Largest Hypoxic Zones in US

Gulf of Mexico

Chesapeake Bay

13

50m

Relationship between Nutrient Pollution, Ecosystem Services, and Human Health

Nutrient Pollution (HABs and Hypoxia)

Changes in Ecosystem
Services
Decreases in
• Clean drinking water
Safe seafood
Air quality near
beaches
Coastal recreational
opportunities
Increases in
• Fish & wildlife kills

 Fish & wildlife susceptibility to other disease factors

Impacts on Human Health

- Lack of clean drinking
 water→ health risks
- Impaired <u>quality</u> of seafood impacts the shellfish industry in entire regions and can last a whole season→ less job security and more stress
- Inability to access coastal areas without respiratory problems and health risks→ more stress and less recreation possible
- Wildlife loss and risks to pets → decreased mental health

Ocean Acidification and Human Health

- Ocean 30% more acidic than pre-industrial levels
- Recent meta-analysis indicates negative effect of ocean acidification on corals and other calcifying coral reef species
 - Threatens numerous ecosystem services reef-associated fisheries, tourism, coastal protection, natural products and drugs
- Edible molluscs also exhibit overall negative responses to ocean acidification
 - Threatens availability and economic benefits of seafood
 - People/communities which rely heavily on bivalves for protein source will be especially vulnerable

(Kroeker et al. 2010. *Ecology Letters* and Cooley et al. 2011. *Fish and Fisheries*)

Ocean Acidification

- Major economic impacts possible
- Example: Pacific Northwest oyster industry
 - 2005 hatcheries near collapse
 - \$84 million industry (3,000 jobs)
 - Determined acidic water was killing oyster larvae
 - Monitor seawater so hatcheries can schedule production when seawater less acidic or treat water that is too acidic

Relationship between Ocean Acidification, **Ecosystem Services, and Human Health**

Ocean Acidification

Changes in Ecosystem Services Decreases in Shellfish production Coral reef production and area Nursery habitat for

- •
- •
- other species (loss of keystone species)
- Resilience of the • community to other stressors like extreme weather, nutrient pollution, or overfishing
- Aesthetics of reefs and • ecotourism opportunities

Impacts on Human Health

- Fewer coastal jobs • (both fisheries and tourism) \rightarrow More stress from unemployment and depressed coastal economies
- Less shellfish biomass • \rightarrow less food security
- Fewer or decreased • quality of coral reef snorkeling and diving opportunities \rightarrow decreases in mental health and relaxation

Habitat Destruction and Loss of Biodiversity

- Coastal habitats some of most threatened in the world
- Most loss is due to either sea level rise or coastal development
- Loss of biodiversity of these ecosystems
- Loss of many ecosystem services

Examples of Ecosystem Services Provided By Coastal Habitats Oyster Reef

Ecosystem Services

- Seafood commercial and recreational fisheries
- Filtration services water quality/quantity
- Shoreline protection & stabilization
- Building materials & buffering capacity
- Nutrient balance
- Aesthetics & recreation
- Science & education

Examples of Ecosystem Services Provided By Coastal Habitats Coral Reef

Ecosystem Services

 Food, medicinal, ornamental, & other products •Nursery & refuge – numerous species Aesthetics, recreation, tourism, cultural and spiritual values Shoreline protection/stabilization

Science & education

Examples of Ecosystem Services Provided By Coastal Habitats Dunes/Beaches Ecosystem Services

•Aesthetics, recreation, tourism, cultural and spiritual values

•Shoreline protection & stabilization

- Soil & sediment balance
- Water quality/quantity
- Science & education

Relationship between Habitat Loss, Ecosystem Services, and Human Health

Habitat and Biodiversity Loss

Sandifer and Suttton-Grier, Nature and Biodiversity Exposure Impacts on Human Health: Thurs, 2:55-3:15pm, Salon F-G

Changes in Ecosystem Services

<u>Decreases</u> in

- Storm surge protection and shoreline stabilization
- Seafood abundance
- Nutrient balance
- Aesthetics, recreation, and education opportunities
- Resilience of the ecosystem to other stressors like nutrient pollution and extreme weather
- Loss of biodiversity & natural products

•

Impacts on Human Health

- Less climate adaptation and storm protection → bigger risk of loss of property and lives
- Less seafood → fewer jobs
 and food security
- Issues with water quality and clean drinking water → health risks
- Fewer or decreased quality of recreational opportunities
- Impacts to mental health

Extreme Events

Hurricane Floyd NOAA-15 AVHRR HRPT Multi-spectral False Color Image September 13, 1999 @ 1306 UTC

25

20

15

3.0

2.5

2.0

Tsunam

Extreme Weather In 2011 Alone...

Fourteen \$1 Billion Disasters

Hurricane Sandy Impacts

 Long Beach, NY

Extreme Weather

- Storm damage to:
 - coastal habitats; loss of coastal habitats and loss of future storm surge protection
 - Human infrastructure including sewer systems (impacting drinking water) and other infrastructure leading to contaminants in water
- Loss of clean water means losses in ecosystem services:
 - Decreases in water quality
 - Loss/degradation of housing, sanitation, security
 - Decreases in seafood safety (radiation, oil, sewage)
 - Losses of wildlife
 - Loss of recreational opportunities

Relationship between Extreme Weather, Ecosystem Services, and Human Health

Impacts on Human Health

- Lack of clean drinking water, health risks
- Impaired <u>quality</u> of
 seafood → cascading
 negative impact on
 fishery jobs (more
 locations than impacted
 area) leading to less job
 security and more stress
 of unemployment
- Fewer or decreased quality of coastal relaxation opportunities; increased stress and anxiety → decreases in mental health and relaxation

Relationship between stressors, E.S., and Human Health

vacation opportunities

What can we do?

- Account for ecosystem services in our policies and decision-making
- Protect and restore "green infrastructure" (coastal ecosystems) to provide natural storm surge protection and climate adaptation benefits
- Conduct research to understand the impacts of these stressors and potential adaptation options
- Monitor and warn

29

Enhance Ecological Forecasting

Questions?

ariana.sutton-grier@noaa.gov www.suttongrier.org

Sandifer, P. and A.E. Sutton-Grier. 2014. Connecting Stressors, Ocean Ecosystem Services, and Human Health. Natural Resources Forum. 38:157-167. DOI: 10.1111/1477-8947.12047

